
A Non-parametric Test Frameworks

A.1 Testing Mean-Variance-Stability

Using partial sums of sample moments to test for constant correlation has been suggested by

Wied et al. [2012b], who derive the limiting distribution of the sequence of partial sums. The

same framework can also be adapted to testing parameter constancy at the marginal distri-

butions: Let {Zt}t=1,...,T , Zt ∈ Rm denote an i.i.d. sample without assuming a particular

parametric model but rather test hypothesis on sample-moments, specified by a function

g : Rm → Rk, where k denotes the number of moment hypotheses that are imposed. A

fluctuation test is then based on the partial sums

Qj =
j√
n

√
(Sj − Sn)′Ω̂−1(Sj − Sn) with Sj =

1

j

j∑
t=1

g(Zt) (A.1)

with covariance matrix Ω, in practice replaced by some estimator Ω̂. The limiting pro-

cess associated with the general fluctuation test (4.1) is closely related to a k-dimensional

Brownian Bridge Bk(π):

Qj ⇒
√

(Γk(π)− πΓk(1))′(Γk(π)− πΓk(1)) (A.2)

with Γ(s) being a k-dimensional vector of independent Brownian Motions defined over π ∈
[0, 1]. It is now possible to apply different functionals on the limit process, the sup-functional

being the most suitable for the alternative of a single regime-change. Consequently

supQj →d sup ||Bk(π)|| (A.3)

So for the CUSUM of squares test, we have k = 1, if means are also subject to change,

k = 2. Critical values cα, such that P (supπ∈ΠBk > cα) = α, are tabulated for example in

Kiefer [1959] or can easily be simulated. Consequently, H0 will be rejected if supQj exceeds

the quantile of sup ||B2(π)|| associated with the desired significance level. The change-point

is estimated by

l̂i = arg max
2≤j≤n−2

Qj (A.4)

where t = 1, n−1, n have to be excluded from the sets of potential break points as each sub-

sample needs to contain at least two elements. Testing time series with higher observation

frequency for structural changes is usually performed under the assumptions of constant

means, as for example in Wied et al. [2012a]. The latter authors develop a fluctuation test

framework using a CUSUM of squares process, which we adopt for the case of daily financial

return series. Since µ can not assumed to be constant in low-frequency application, the

variance test is slightly generalized in the following by allowing µi to break simultaneously

with σ2
i . Under the assumption of Gaussian marginal distributions, mean µ and variance

σ2 are the only parameters subject to structural changes. It is also possible to embed the

tν-distributional assumption into testing mean-variance stability: if degrees of freedom are

assumed to be constant, only one location parameter µi, one scale parameter ξi are subject

to change. In a fluctuation test framework, this corresponds to testing constancy of the first

1



and second moment, (µ1,i, µ2,i)
′ of Xi, i indexing the dimension under consideration. This

follows from the variance definition σ2 = µ2 − µ2
1 and that µ1 is also constant under the

null hypothesis. No data transformation is required, such that one can write Zi = Xi and

it is possible to directly apply a fluctuation test on (µ1, µ2)′ by assuming that we observe

samples from Zi,t
i.i.d.∼ (µ1,i, µ2,i, µ3,i, µ4,i). The moment hypothesis is imposed through

g(Zt) = (Zi, Z
2
i )

For bounded third and fourth moments the asymptotic covariance matrix follows from the

Central Limit Theorem, applied to the full-sample estimator of (µ1,i, µ2,i)
′, namely the

sample moments (µ̂1,i, µ̂2,i)
′:

√
n

(
µ̂1,i

µ̂2,i

)
→d N

((
µ1,i

µ2,i

)
; Var

((µ̂1,i

µ̂2,i

)))

with

Var
((m1,i

m2,i

))
=

(
Var(Zi) Cov(Zi, Z

2
i )

Cov(Zi, Z
2
i ) Var(Z2

i )

)
=

(
µ2 − µ2

1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)

The fluctuation test statistic Qt is computed with

Sj =
(1

j

j∑
t=1

Zt,
1

j

j∑
t=1

Z2
t

)′
where Ω̂ =

1

n

(
µ̂2 − µ̂2

1 µ̂3 − µ̂1µ̂2

µ̂3 − µ̂1µ̂2 µ̂4 − µ̂2
2

)
(A.5)

In the Gaussian case, the relevant moments are obtained as

µ1 = µ

µ2 = µ2 + σ2

µ3 = µ3 + 3µσ2

µ4 = µ4 + 6µ2σ2 + 3σ4

such that the asymptotic covariance matrix of the full-sample estimator is given by

Ω =
1

n

(
σ2 2µσ2

2µσ2 2σ4 + 4µ2σ2

)

Several extensions of practical interest can be tested, one could for example suspect that

skewness and/or kurtosis are also subject to structural changes. Simulation evidence however

revealed that this additional flexibility does not improve testing in either framework.

A.2 Testing Constant Cross-Moments

The principle of using partial sums of empirical moments can be extended to testing con-

stant dependency under the assumption that Pearson’s correlation coefficient (or correlation

matrix in a higher-dimensional system) is the only parameter of the joint-distribution, that

changes between sub-samples and that marginal distribution change only in mean and vari-

ance. Trivially satisfied by the multivariate Gaussian, the same methods also apply to a
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t-distribution with constant degrees of freedom as the correlation coefficient for standardized

data is obtained as

ρ12 =
ν
ν−2ξ12√

ν
ν−2ξ11 ·

√
ν
ν−2ξ22

=
ξ12√
ξ11

√
ξ22

= ξ12 (A.6)

and so the cross-dispersion ξ12 is the only dependency-shaping parameter subject to change.

In order to test for constant correlation, the observed data are now cleaned from possible

changes in marginal parameters using the results from the previous section. Therefore we

specifically assume that observations are drawn from a latent DGP by

Xt =

 µ1,11t≤l1 + µ1,21t>l1

· · ·
µm,11t≤lm + µ2,m1t>lm

+


√
σ2

1,11t≤l1 + σ2
1,21t>l1 · · · 0

...
...

0 · · ·
√
σ2
m,11t≤lm + σ2

m,21t>lm

Zt

Inference on constant marginal distributions is directly based on the observed Xt. Prior to

step 2, the data are transformed according to

Ẑi,t =
Xi,t − µ̂i,11t≤l̂1 − µ̂i,21t>l̂1√

σ̂2
i,11t≤l̂1 + σ̂2

i,21t>l̂1

if a break is detected or Ẑt =
Xi,t − µ̂i

σ̂i
else (A.7)

for i = 1, ..., n. Using Ẑt, partial sums are computed by stacking the elements of the matrix

of standardized cross-moments:

Ŝj =
1

j

j∑
t=1

(
Ẑ1Ẑ2, · · · , Ẑ1Ẑm, Ẑ2Ẑ3, · · · , Ẑ2Ẑm, · · · , Ẑm−1Ẑm

)′
(A.8)

Based on the (unobserved) latent DGP Zt, the test statistic sup Q̂j would have the limiting

distribution sup ||B(m−1)m/2(π)||. It remains to find an estimator for the full-sample co-

variance matrix Ω. Wied [2015+, forthcoming] suggests a block bootstrap estimator of the

corresponding covariance matrix in the case of weakly stationary time series, the transfor-

mation prior to step 2 however allows to work under the assumption of strict stationarity,

so we employ a simple bootstrap scheme to estimate Ω and usual critical values from the

Brownian Bridge apply. This way, the effect of stochastic volatility can be absorbed.

Bootstrap approximations of the covariance matrix are however no longer valid if breaks are

present in the margins. In this case, data are standard piecewise and asymptotic critical

values do not apply. Demetrescu and Wied [2019] therefore suggest to apply a wild boot-

strap scheme: Let X∗1 , ..., X
∗
n denote a sample from X1, ..., Xn, drawn with replacement.

The bootstrap sample is obtained from

X◦i,t = µ1,i +
(X∗i,t − µ∗1,i)

σ2∗
i,t

σi,t (A.9)

such that in the bootstrap sub-samples at each margin the sample mean µbi,1 and sample

variance σ2,b
i,1 match sample mean µi,1 and sample variance σ2

i,1 from the original sample.

Here µ∗1,i = 1
λ̂i

λ̂i∑
t=1

X∗t and σ2∗
1,i = 1

λ̂i

λ̂i∑
t=1

(X∗t − µ∗i,1)2. In every bootstrap repetition b the
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fluctuation test statistic is computed as in (3.10) and denoted by supQbj and the p-value

approximated by

p̂ =
1

B

B∑
b=1

1{sup Q̂b
j>sup Q̂j}

A.3 Testing for Constant Copula

Throughout the previous section it has been implicitly assumed that Pearson’s correlation

coefficient suffices to describe the dependency in a multivariate system. By imposing this

restriction on the dependence structure, many features frequently observed in financial ap-

plications are ignored in the testing procedure. Testing for a constant copula is a suitable

way to test constant dependency of multivariate random variables beyond the moment hy-

pothesis lined out previously. As before, applying the fluctuation test framework to copulae

does not require parametric assumptions but only a test decision regarding the constancy

of the marginal distributions.

Based on the (potentially) piecewise residuals, we follow Bücher et al. [2014] to transform

the data onto the ’copula-scale’ [0, 1]d, by the empirical distribution function either over the

full or the partial samples resulting from a split at j:

Ûi(x) =
1

n

n∑
t=1

1(Xt,i ≤ x)

Û1:j
i (x) =

1

j

j∑
t=1

1(Xt,i ≤ x)

Û j+1:n
i (x) =

1

n− j

n∑
t=j+1

1(Xt,i ≤ x) ∀x ∈ R

Define next the full-sample and partial-sample empirical copula by obtained from dividing

the sample at a given j

Ĉn(u) :=
1

n

n∑
t=1

1(Ût ≤ u)

Ĉ1:j(u) :=
1

j

j∑
t=1

1(Û1:j
t ≤ u)

Ĉj+1:n(u) :=
1

n− j

n∑
t=j+1

1(Û j+1:n
t ≤ u)

Then the test is based on the difference process of the partial-sample empirical copulae:

S(j, u) =
j(n− j)
n3/2

(
1

j

j∑
t=1

1{Ût≤u} −
1

n− j

n∑
t=j+1

1{Ût≤u}

)
(A.10)

Constructing the difference process in this way improves the test statistics of Rémillard

[2010] and Bücher and Ruppert [2013] who use the empirical copula over the full sample

rather than partial-sample empirical copulae, as pointed out by Bücher et al. [2014] in a

simulation study. Thus only the more recent method is used in the subsequent Monte Carlo
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studies.

The test statistic follows from integrating with respect over [0, 1]d, where in practice a

discretization grid has to be chosen and subsequently take the sup-functional over the set of

change point candidates j ∈ {2, ..., n− 2}:

T = sup
j

( ∫
u[0,1]d

S(j, u)2 ˆdCn(u)

)
(A.11)

In order to approximate critical or p-values, Bücher et al. [2014] suggest a block multiplier

bootstrap scheme that works under strong mixing conditions and is also used in Bücher et al.

[2014]1. Under the assumption of a proper transformation prior to testing for a constant

copula, a simplified i.i.d.-multiplier bootstrap can be used in the following way: For each

bootstrap repetition b one draws ζb,t
i.i.d.∼ N(0, 1) and computes

T̂ = sup
j

( ∫
u[0,1]d

Sb(j, u)2 ˆdCn(u)

)

Sb(j, u) = Bb(j, u)− jBb(1, u)

Bb(j, u) =
1√
n

j∑
t=1

ζb,t

(
1{Ût≤u} − Ĉn(u)

)
(A.12)

from where the approximated p-value follows as

p̂ =
1

B

B∑
b=1

1{T̂b>T}

B Sup-LR Tests for Piecewise i.i.d. Margins

Complementary to our simulation study in section 3.1, we confirm our central observations

for piecewise i.i.d. data. In contrast to before, we allow for µi > 0. Such an assumption

would be useful in the case of bond spreads. Decomposing the entire covariance matrix into

Σ = S′PS =


σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm




1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n

...
. . . 1

...

ρ1n ρ2n · · · 1



σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm


enables us to easily separating inference on marginal parameters and correlation matrix by

1The authors also suggest a more advanced bootstrap scheme based on the partial-sample copulae, which
however is computationally intractable for the Monte Carlo studies in section 4.
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writing

Xt
i.i.d.∼ N(θ1,1, θ1,1, · · · , θm,1, P1) for t = 1, ..., l1

Xt
i.i.d.∼ N(θ1,2, θ2,1, · · · , θm,1, P1) for t = l1 + 1, ..., l2

· · · · · ·

Xt
i.i.d.∼ N(θ1,2, θ2,2, · · · , θm,2, P1) for t = lm + 1, ..., lD

Xt
i.i.d.∼ N(θ1,2, θ2,2, · · · , θm,2, P2) for t = lD, ..., n

and testing Hypothesis Pair 3 with θi = (σ2
i , µi) and δi = Pi. Following the steps out-

lined in section 3.1, the difference of the log-likelihood under full-sample and partial-sample

estimators yields

Aj(Xi; µ̂i,0, µ̂i,1, µ̂i,2, σ̂
2
i,0, σ̂

2
i,1, σ̂

2
i,2) = n log(σ̂2

i,0)− j log(σ̂2
i,1)− (n− j) log(σ̂2

i,2)

Note that under i.i.d. sampling there is no need for robust variance-covariance estimators

and the limiting process under the null hypothesis is given by eq. (3) with k = 2 degrees of

freedom. Data are standardized according to

Ẑi,t =
Xi,t − µ̂i,11t≤l̂1 − µ̂i,21t>l̂1√

σ̂2
i,11t≤l̂1 + σ̂2

i,21t>l̂1

if a break is detected or Ẑt =
Xi,t − µ̂i

σ̂i
else (B.1)

The test for constant correlation is set up in the same way as under volatility clustering.

C Simulation Results for Piecewise i.i.d. Margins

In this section we provide simulation results under the assumptions of piecewise i.i.d. Gaus-

sian marginal distributions. Otherwise, the setup is analogous to section 3.1 in the main

text. Using vector notation and the covariance decomposition of the multivariate Gaussian

distribution Σ = S′PS, data is generated according to

Xt
i.i.d.∼ N

(0.05

0.05

0.05

 ,

1 0 0

0 1 0

0 0 1

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = 1, ..., l1

Xt
i.i.d.∼ N

(0.06− 0.01s

0.05

0.05

 ,

s 0 0

0 1 0

0 0 1

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = l1, ..., l2

Xt
i.i.d.∼ N

(0.06− 0.01s

0.06− 0.01s

0.06− 0.01s

 ,

s 0 0

0 s 0

0 0 s

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = l2, ..., lD

Xt
i.i.d.∼ N

(0.06− 0.01s

0.06− 0.01s

0.06− 0.01s

 ,

s 0 0

0 s 0

0 0 s

 ,

 1 ρ2 ρ2

ρ2 1 ρ2

ρ2 ρ2 1

) for t = lD, ..., n

In this way we ensure that mean µ and variance σ2 change simultaneously. Again, empirical
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rejection rates under the (true) null hypothesis of constant correlation coefficients are pre-

sented in table C.1. Using the incorrect asymptotic values would again lead to severe size

distortions. These are however corrected with our bootstrap scheme.

Table C.1: Gaussian Distribution, Scenario 1: Rejection Rates under H0

s n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

Margins X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

1 0.027 0.028 0.044 0.038 0.038 0.038 0.039 0.036 0.046 0.051 0.044 0.048
1.5 0.108 0.110 0.124 0.122 0.696 0.662 0.665 0.609 0.996 0.997 0.994 0.991
2 0.297 0.342 0.366 0.363 0.995 0.994 0.993 0.990 1 1 1 1

2.5 0.540 0.594 0.652 0.640 1 1 1 1 1 1 1 1
3 0.706 0.747 0.833 0.808 1 1 1 1 1 1 1 1

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 2 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.026 0.044 0.052 0.035 0.028 0.038 0.044 0.043 0.036 0.051 0.054 0.043
1.5 0.058 0.085 0.083 0.046 0.015 0.035 0.100 0.098 0.019 0.048 0.060 0.049
2 0.040 0.063 0.114 0.053 0.011 0.050 0.069 0.058 0.019 0.051 0.057 0.039

2.5 0.033 0.051 0.111 0.054 0.013 0.051 0.059 0.048 0.019 0.048 0.054 0.039
3 0.030 0.043 0.099 0.057 0.014 0.051 0.056 0.046 0.020 0.048 0.054 0.042

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.031 0.050 0.120 0.057 0.044 0.048 0.070 0.057 0.045 0.052 0.062 0.049
1.5 0.043 0.071 0.152 0.062 0.021 0.048 0.138 0.111 0.021 0.047 0.073 0.061
2 0.039 0.064 0.179 0.083 0.019 0.047 0.078 0.063 0.023 0.047 0.069 0.055

2.5 0.031 0.045 0.178 0.079 0.019 0.051 0.071 0.058 0.024 0.049 0.065 0.052
3 0.023 0.042 0.164 0.077 0.021 0.057 0.071 0.049 0.024 0.050 0.065 0.047

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 4 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.016 0.039 0.130 0.034 0.049 0.061 0.086 0.051 0.059 0.065 0.086 0.067
1.5 0.022 0.042 0.166 0.038 0.032 0.055 0.174 0.126 0.031 0.070 0.099 0.075
2 0.029 0.044 0.218 0.055 0.021 0.058 0.108 0.077 0.033 0.066 0.097 0.066

2.5 0.030 0.039 0.222 0.056 0.025 0.061 0.093 0.063 0.031 0.067 0.094 0.067
3 0.020 0.023 0.194 0.046 0.027 0.065 0.093 0.065 0.032 0.067 0.095 0.065

We proceed to empirical power which is computed the same values of ρ, varying from -0.1 to

0.9 in steps of 0.1. Similar to before, the residual effect works into the same direction as the

power is increased by the bootstrap scheme in the fluctuation test framework and corrected

downwards in the sup-LR test framework.
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Figure C.1: Gaussian Distribution, n=100, Scenario 2: Empirical Power
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Figure C.2: Gaussian Distribution, n=500, Scenario 2: Empirical Power
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Figure C.3: Gaussian Distribution, n=1500, Scenario 2: Empirical Power
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Again these results point into the same direction as section 3.1. Also, empirical power

exhibits the same dimensionality effects in both testing frameworks we already saw under

volatility clustering (figure C.4 - C.6).

Figure C.4: Multivariate Gaussian, n=100, Scenario 2: Empirical Power
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Figure C.5: Multivariate Gaussian, n=500, Scenario 2: Empirical Power
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Figure C.6: Multivariate Gaussian, n=1500, Scenario 2: Empirical Power
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As in the GARCH-case, except for small samples and small ρ2, bias and RMSE, shown in

table C.2, are considerably smaller for the sup-LR test. Note that for small samples all tests

perform better in a piecewise i.i.d. setting than under volatility clustering, presumably since

parameter estimators and testing power at the margins are less precise here.
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Table C.2: Multivariate Gaussian, Scenario 2: Break Point Estimation

ρ2 n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

m = 2 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -2.99 13.15 -4.96 16.87 -14.29 31.03 -0.49 24.78 -18.39 41.73 1.76 20.40
0.1 -5.86 19.13 -10.23 23.07 -26.68 57.01 -12.77 62.56 -38.63 83.59 0.23 62.21
0.3 -9.77 22.73 -15.25 27.36 -85.00 137.44 -76.94 138.01 -164.40 305.72 -121.79 308.35
0.5 -9.48 20.22 -16.10 29.00 -77.34 131.78 -59.34 119.72 -181.78 327.76 -97.57 259.20
0.7 -7.21 15.12 -8.63 22.72 -27.59 61.15 -4.31 27.92 -42.10 101.06 -2.43 20.76
0.9 -4.92 11.04 0.53 5.21 -12.70 32.69 0.11 4.56 -14.87 42.38 -0.08 3.25

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -2.55 9.78 -3.57 12.62 -10.31 19.48 0.92 9.65 -13.47 25.87 1.54 7.93
0.1 -5.27 16.69 -9.94 21.59 -22.96 45.92 -3.34 37.48 -32.87 65.28 3.13 24.49
0.3 -8.58 19.48 -16.41 27.98 -82.95 125.35 -71.20 132.78 -167.12 287.54 -87.16 256.22
0.5 -9.42 17.62 -17.55 29.68 -96.40 134.51 -57.88 118.46 -205.71 320.80 -68.59 212.62
0.7 -8.28 14.64 -7.89 22.36 -37.18 70.05 -0.41 11.78 -33.52 84.18 -1.36 9.92
0.9 -6.60 11.68 1.27 3.03 -12.03 31.38 0.71 1.87 -11.35 37.17 0.55 1.91

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 4 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -1.98 7.38 -1.73 9.05 -9.12 17.52 0.69 5.00 -11.90 21.67 0.72 1.35
0.1 -3.62 12.91 -8.35 19.82 -22.04 43.03 -3.77 27.17 -28.06 53.14 -0.03 6.91
0.3 -7.70 16.60 -14.84 27.33 -79.97 115.49 -67.37 126.15 -171.65 277.71 -66.74 175.89
0.5 -9.54 16.18 -17.67 30.64 -102.77 133.12 -46.35 107.56 -230.12 326.45 -79.45 235.21
0.7 -9.87 15.23 -7.51 22.41 -45.46 76.43 0.19 7.07 -44.56 104.33 1.57 16.64
0.9 -9.45 14.07 1.40 2.86 -17.84 37.67 0.87 1.31 -10.53 35.65 0.77 4.58

D Sup-LR Test for Gaussian Copula

As alternative to using t-Copula as in section 3.2 in the main paper, step 2 can also be

based on the copula associated with the Gaussian distribution assumption. Step 1 remains

unchanged, however the data are now (piecewise) transformed onto the copula scale by

Ûi,t = F (Xi, µ̂i,1, σ̂i,1) for t = 1, ..., l̂i

Ûi,t = F (Xi, µ̂i,2, σ̂i,2) for t = l̂i + 1, ..., n if the test rejects

Ûi,t = F (Xi, µ̂i,0, σ̂i,0) for t = 1, ..., n if not

(D.1)

The pseudo-observations are then used to estimate the dependency parameter (i.e. the cor-

relation matrix) of the Gaussian copula under the null and alternative hypothesis. Consider

next the density of the Gaussian copula

f(Ût;P ) = |R|− 1
2 exp

(
− 1

2
Û

′

t (R
−1 − I)Ût

)

from where the full-sample log-likelihood

L(Û ;P0) = −n
2
|R| − 1

2

n∑
t=1

Û
′

t (R
−1
0 − I)Ût

and the partial-sample log-likelihood

L(Û ;P1, P2) = − j
2
|R1| −

n− j
2
|R2| −

1

2

j∑
t=1

Û
′

t (R
−1
1 − I)Ût −

1

2

n∑
t=j+1

Û
′

t (R
−1
2 − I)Ût

are obtained. Let R̂0, R̂1 and R̂2 denote the ML-estimators for the correlation matrix of the
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full sample and each sub-sample. Evaluating the log-likelihood at the respective parameter

estimates gives the test statistic for a fixed j as

Aj = 2
(
L(Û ; R̂1, R̂2)− L(Û ; R̂0)

)
.

Had one based the test statistic on the unobserved Zt, a reasonable approximation of the

critical value associated with the sup-functional sup
π·n≤j≤π·n

Aj would be given by the appro-

priate quantile of sup
π∈Π
B(m−1)m/2(π).

E Application to Commodity and Equity Index Data

A third empirical application uses the methods subject to the simulation studies section 3.1:

We test 3 for Crude Oil spot market returns 2 and the European equity sector, which we

proxy by the EUROSTOXX503 over the time-period 1991-04-17 to 2003-03-05. Foreign

involvement in petrol-exporting countries has been fairly low following the early 1990s until

2003. Additionally events in the late 1980s and later technological changes in oil production,

the financial crises and relaxed monetary policy probably did not influence the fundamental

market environment over the sample period. However markets experienced a period of

increased volatility around 2000, associated with events such as the burst of the dotcom-

bubble among others. This can be observed in table F.2 and F.2. Rolling correlations in

figure F.1 however indicate a rather stable correlation pattern over the test period and thus

making the sample a plausible candidate to test for Hypothesis Pair 3. Correlations and

(annualized) volatilities are expressed in percentage points.

Figure E.1: Estimation of European Crude Oil and Equity Data

Fluctuation Test sup-LR test
Crude Oil Equity Crude Oil Equity

l̂i 1998-01-19 1997-07-16 1996-03-15 1997-06-27
test statistic (volatility) 88.76 7.49 378.04 903.76

test statistic (correlation) 1.094 8.92
p-value (boot) 0.18 0.23

ρ0 1.25 0.008
ρ1 -5.81 -5.81
ρ2 5.44 5.46

All procedures strongly reject the hypothesis of constant margins, the critical values at 95

% for the fluctuation test being 1.358 and for the sup-LR test 8.68. When it comes to

testing constant correlation, our empirical findings from section 3.1 directly carry over to

this particular example. Following table 1, it is crucial to apply a suitable bootstrap here.

Using the bootstrapped p-values around or larger than 0.2, neither fluctuation test and not

the sup-LR tests reject Hypothesis Pair 3. Had one used the incorrect asymptotic value

for the sup-LR test, which is 8.68 at 95 % confidence level, one might incorrectly reject at

2Europe Brent, Data is taken from the U.S. Energy Information Administration:
https://www.eia.gov/dnav/pet/hist/

3ISIN: EU0009658145, returns are calculated from the closing price of the last trading day each month.
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the second step. As the fluctuation test exhibits rejection rates below the nominal level in

the simulation, it is not surprising that the test does not reject, even when the incorrect

asymptotic value is used.

It has been previously established that incorrectly assuming constant variances when testing

for constant correlation - implicitly by considering covariances as Aue et al. [2009] or explic-

itly by directly using the procedure of Wied et al. [2012b] - leads to flawed inference. But,

as the preceding application points out, even if changes at the marginal distributions are

taken into account correctly, applying invalid standard asymptotics may lead to incorrectly

rejecting constant cross-sectional dependence.
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(a) Rolling Correlations, Equity and Crude Oil
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(b) Crude Oil, Rolling Volatility
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(c) Equity, Rolling Volatility

F Application to European Bond Data

This section takes the sup-LR method to a Government Bond spreads around the Euro

area debt crisis. We use par yields from France, Germany, Italy and Spain with a matu-

rity of 5 years. Spreads are computed against the 5y-EURIBOR-Swap rate and reported in

basis points. Our sample starts on 2010-01-01, when negative news on the fiscal capacity

of several Euro area members started to accrue and goes until 2012-09-06, when the ECB

announced the Outright Monetary Transactions programme that eventually led to a fall in
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credit spreads. Since our framework allows for at most one structural change at each margin

and the dependency structure, extending the sample to cover a period of three regimes is

not possible with the method subject to our simulation study in section 3.

Since our methods are particularly suited for dating structural changes, even under misspec-

ification, we maintain the assumption of a multivariate Gaussian distribution. Results for

the marginal distributions are reported in table F.1.

Table F.1: Estimation of European Bond Data: Margins

France Fluctuation sup-LR, Gaussian

l̂i 2011-10-14 2011-10-13
supAj 10.83 1341.93
µ̂1 -15.28 -15.32
µ̂2 26.52 26.41
σ̂1 5.94 5.91
σ̂2 21.59 21.58

Germany Fluctuation sup-LR, Gaussian

l̂i 2011-07-12 2011-07-11
supAj 11.34 958.52
µ̂1 -39.76 -39.69
µ̂2 -74.98 -74.93
σ̂1 9.91 9.84
σ̂2 10.69 10.69

Italy Fluctuation sup-LR, Gaussian

l̂i 2011-07-07 2011-07-08
supAj 12.23 1456.68
µ̂1 84.42 84.62
µ̂2 344.51 345.11
σ̂1 33.44 33.63
σ̂2 38.58 84.08

Spain Fluctuation sup-LR, Gaussian

l̂i 2011-06-13 2011-07-08
supAj 10.45 748.84
µ̂1 125.36 129.15
µ̂2 317.63 324.71
σ̂1 54.62 55.99
σ̂2 110.11 109.59

Both procedures strongly reject the hypothesis of constant margins, the critical values at 99

% for the sup-LR tests being 15.51. For France, Italy and Spain, both the level and volatility

of bond spreads increased substantially, while for Germany the level of spreads decreased

from around -40bp to -73bp, while the volatility remained roughly constant. Thus our

methods support the occurrence of a strong flight-to-quality event, that also let French

spreads rise substantially, although the fiscal capacities of France were never a primary

concern during the European debt crisis.

In figure F.1 we display spreads and their rolling volatilities over a 252-day window with
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the respective partial-sample means and standard deviations obtained from the sup-LR test.

The dashed blue line indicates the change-point for each margin, the dashed red line the

change point of the correlation matrix.

Figure F.1: Bond-spreads (5y) in basis points
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(b) France, Rolling Volatilities

2010 2011 2012

−
10

0
−

80
−

60
−

40
−

20

B
on

d 
S

pr
ea

d 
(b

p)

(c) Germany, Bond-Spreads
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(d) Germany, Rolling Volatilities
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(e) Italy, Bond-Spreads
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(f) Italy, Rolling Volatilities
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(g) Spain, Bond-Spreads
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(h) Spain, Rolling Volatilities

In table F.2, we present results of testing and estimating step 2 with the fluctuation and

sup-LR framework from section 3.1, respectively. All partial-sample correlations are denoted
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in percentage points.

Table F.2: Estimation of European Bond Data: Dependency Structure

Fluct. sup-LR, Gauss

l̂D 2011-06-13 2011-09-16
supAj 7.49 784.76
p-val. 0 0

ρ̂1(sFR, sGER) 61.15 27.91
ρ̂2(sFR, sGER) -30.96 -63.69
ρ̂1(sFR, sIT ) -48.72 7.38
ρ̂2(sFR, sIT ) 29.29 -50.14
ρ̂1(sFR, sES) -42.29 -8.12
ρ̂2(sFR, sES) -17.16 -68.83
ρ̂1(sGER, sIT ) -85.42 -72.10
ρ̂2(sGER, sIT ) -32.91 9.80
ρ̂1(sGER, sES) -82.98 -60.83
ρ̂2(sGER, sES) 30.89 32.18
ρ̂1(sIT , sES) 96.49 83.05
ρ̂2(sIT , sES) 49.16 93.57

As opposed to the marginal distributions, estimated correlations differ considerably, which

is largely due the difference in l̂D. Figure F.2 shows rolling correlations of French and

German bond spreads, once without correction at the margins (solid black), once using the

fluctuation test (dashed red) and once using the sup-LR test (dashed blue). Due to the

different change point estimate, the respective sub-samples vary considerably in magnitude.

Since our simulation study reveals a higher precision for the sup-LR test, we will use the

resulting partial sample estimates in the remainder.
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Figure F.2: Bond-spreads (5y) in basis points
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Figure F.3: France and Germany, Rolling Correlations

The partial sample estimates reveal some interesting dynamics, especially with regard to

French spreads. As can be seen in figure F.1, Italian and Spanish spreads co-moved even

stronger in the second sub-sample, a typical indicator of contagion. Both were co-moving

negatively against German spreads in the run-up to the crisis, but only experience a weak

correlation with German spreads once they settled at their respective new levels. This find-

ing confirms, that German bonds were regarded as a safe haven throughout the crisis.

The time path and co-movement of French spreads does not yield a similarly clear-cut result.

During the first sub-sample, French spreads experienced a weakly positive correlation with

German spreads, but were not regarded as a safe haven once the fiscal situation within the

Euro area became more critical. After a sharp increase in early 2012, spreads however were

moving back to the pre-crisis level in the second half of 2012, as indicated by the strongly

negative correlation with German and Italian/Spanish spreads. This permits the conclusion,

that after initial uncertainty on the soundness of public finances, French spreads returned

to pre-crisis level before large-scale interventions by the ECB. The preceding application

strengthens, that incorrectly assuming constant variances when testing for constant correla-

tion - implicitly by considering covariances as Aue et al. [2009] or explicitly by directly using

the procedure of Wied et al. [2012b] - can lead to imprecise conclusions on partial sample

dependency structures.
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